Decoding of synaptic voltage waveforms by specific classes of recombinant high-threshold Ca(2+) channels.

نویسندگان

  • Zhi Liu
  • Jihong Ren
  • Timothy H Murphy
چکیده

Studies suggest that the preferential role of L-type voltage-sensitive Ca(2+) channels (VSCCs) in coupling strong synaptic stimulation to transcription is due to their selective activation of local chemical events. However, it is possible that selective activation of the L-type channel by specific voltage waveforms also makes a contribution. To address this issue we have examined the response of specific Ca(2+) channel types to simulated complex voltage waveforms resembling those encountered during synaptic plasticity (gamma and theta firing frequency). L-, P/Q- and N-type VSCCs (alpha1C, alpha1A, alpha1B/beta1B/alpha2delta, respectively) were all similarly activated by brief action potential (AP) waveforms or sustained step depolarization. When complex waveforms containing large excitatory postsynaptic potentials (EPSPs), APs and spike accommodation were applied under voltage clamp we found that the integrated L-type VSCC current was approximately three times larger than that produced by the P/Q- or N-type Ca(2+) channels (gamma frequency 1 s stimulation). For P/Q- or N-type channels the complex waveforms led to a smaller current than that expected from the response to a simple 1 s step depolarization to 0 or +20 mV. EPSPs present in the waveforms favoured the inactivation of P/Q- and N-type channels. In contrast, activation of the L-type channel was dependent on both EPSP- and AP-mediated depolarization. Expression of P/Q-type channels with reduced voltage-dependent inactivation (alpha1A/beta2A/alpha2delta) or the use of hyperpolarized intervals between AP stimuli greatly increased their response to complex voltage stimuli. We propose that in response to complex synaptic voltage waveforms P/Q- and N-type channels can undergo selective voltage-dependent inactivation leading to a Ca(2+) current mediated predominantly by L-type channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spike-mediated and graded inhibitory synaptic transmission between leech interneurons: evidence for shared release sites.

Inhibitory synaptic transmission between leech heart interneurons consist of two components: graded, gated by Ca2+ entering by low-threshold [low-voltage-activated (LVA)] Ca channels and spike-mediated, gated by Ca2+ entering by high-threshold [high-voltage-activated (HVA)] Ca channels. Changes in presynaptic background Ca2+ produced by Ca2+ influx through LVA channels modulate spike-mediated t...

متن کامل

Ivanov & Calabrese Shared Sites for Spike-mediated and Graded Transmission Shared Sites for Spike-mediated and Graded Transmission

TITLE: Spike-mediated and graded inhibitory synaptic transmission between leech interneurons: Evidence for shared release sites. Shared sites for spike-mediated and graded transmission 2 Inhibitory synaptic transmission between leech heart interneurons consist of two components; graded, gated by Ca 2+ entering via low-threshold (LVA) Ca channels, and spike-mediated, gated by Ca 2+ entering via ...

متن کامل

Involvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex

In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...

متن کامل

Involvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex

In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...

متن کامل

A Ca(v)3.2/syntaxin-1A signaling complex controls T-type channel activity and low-threshold exocytosis.

T-type calcium channels represent a key pathway for Ca(2+) entry near the resting membrane potential. Increasing evidence supports a unique role of these channels in fast and low-threshold exocytosis in an action potential-independent manner, but the underlying molecular mechanisms have remained unknown. Here, we report the existence of a syntaxin-1A/Ca(v)3.2 T-type calcium channel signaling co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of physiology

دوره 553 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2003